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Motivation - Industrial context
� Finite element numerical simulations to study large

hydraulic structures and evaluate their safety

� Complex behavior due to the combination of
different effects (mechanical, thermal, hydraulic)

� Nonlinearity at the interface level
� Concrete dams show different interface zones:

� concrete-rock contact in the foundation
� joints between the blocks of the dam
� joints in concrete
� ...

� Gleno (Italy, 1923), Malpasset (France, 1959) Gleno

Malpasset
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Contribution of the thesis

� Introduction of a posteriori error estimates for contact problems

Ω
ΓD

ΓC

ΓN

n

� Improvement of the current constitutive relations for joints
(JOINT MECA RUPT and JOINT MECA FROT)

adhesion cohesive zone fissure
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A posteriori estimate background

◦ System of PDEs with exact solution u
◦ Numerical method ⇒ approximate solution uh

A posteriori error estimate:

‖|u − uh|‖ ≤

(∑
T∈Th

ηT (uh)2

)1/2

(1)

where ‖| · |‖ is some norm.

I Error control
I Local and global efficiency (ηT (uh) ≤ C ‖|u − uh|‖TT

for every element T )
I Error localization
I Identification and separation of different components of the error
I Adaptive mesh refinement (with some stopping criteria)
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Unilateral contact problem

Ω
ΓD

ΓC

ΓN

n Strong formulation

divσ(u) + f = 0 in Ω, (2a)
σ(u) = EEE ε(u) in Ω, (2b)

u = 0 on ΓD , (2c)
σ(u)n = gN on ΓN , (2d)

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on ΓC , (2e)
σt(u) = 0 on ΓC . (2f)

◦ u : Ω(⊆ Rd )→ Rd , d ∈ {2, 3} is the unknown displacement

◦ ε(u) = (εij (u))ij , where εij (u) := 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, is the strain tensor

◦ σ(u) = EEE ε(u) := λtrε(u)Id + 2µε(u) is the elasticity stress tensor

◦ f ∈ L2(Ω) and gN ∈ L2(ΓN ) are volume and surface forces, respectively

◦ u = unn + ut and σ(u)n = σn(u)n + σt(u) on ΓC
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Unilateral contact problem

Ω
ΓD

ΓC

ΓN

n Strong formulation

divσ(u) + f = 0 in Ω, (2a)
σ(u) = EEE ε(u) in Ω, (2b)

u = 0 on ΓD , (2c)
σ(u)n = gN on ΓN , (2d)

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on ΓC , (2e)
σt(u) = 0 on ΓC . (2f)

H1
D(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓD

}
K :=

{
v ∈ H1

D(Ω) : vn ≤ 0 on ΓC
}

Weak formulation
Find u ∈ K such that(

σ(u), ε(v − u)
)
≥ (f , v − u) + (gN , v − u)ΓN ∀v ∈ K . (3)
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Unilateral contact problem - Numerical approach

Let Th be a triangulation of Ω, and Vh := H1
D(Ω) ∩Pp(Th), p ≥ 1. Moreover,

we define [ · ]R− as the projection on the half-line of negative real numbers R−,
and the following operator

Pγ : Vh → L2(ΓC )
vh 7→ σn(vh)− γvh,n.

The contact boundary condition (2e) can be rewritten as

σn(u) = [Pγ(u)]R− . (4)

Nitsche-based method [Chouly-Hild2013]

Find uh ∈ Vh such that(
σ(uh), ε(vh)

)
−
([

Pγ(uh)
]
R− , vh,n

)
ΓC

= (f , vh)+(gN , vh)ΓN ∀vh ∈ Vh.
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Unilateral contact problem - Numerical approach

Nitsche-based method

Find uh ∈ Vh such that(
σ(uh), ε(vh)

)
−
([

Pγ(uh)
]
R− , vh,n

)
ΓC

= (f , vh)+(gN , vh)ΓN ∀vh ∈ Vh.

In order to solve this nonlinear problem

1. we regularize the projection
operator [ · ]R− with [ · ]reg,δ,

2. we use Netwon method.

x
δ−δ

[x ]R−

[x ]reg,δ

At each step k ≥ 1 we have to solve the linear problem: Find uk
h ∈ Vh such that(

σ(uk
h ), ε(vh)

)
−
(
Pk−1

lin (uk
h ), vh,n

)
ΓC

= (f , vh) + (gN , vh)ΓN ∀vh ∈ Vh. (5)
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A posteriori analysis - Measure of the error

At the k-th iteration of the Newton algorithm, we define the residual operator
R(uk

h ) ∈ (H1
D(Ω))∗ by

〈R(uk
h ), v〉 := (f , v) + (gN , v)ΓN −

(
σ(uk

h ), ε(v)
)

+
([

Pn
1,γ(uk

h )
]
R− , vn

)
ΓC

(6)

for all v ∈ H1
D(Ω). Then, the error between u and uk

h is measured by the dual
norm ∥∥R(uk

h )
∥∥
∗

:= sup
v∈H1

D (Ω),
‖v‖C,h=1

〈R(uk
h ), v〉 (7)

where ‖ · ‖C,h is a norm which takes into account the contact boundary part:

‖v‖2
C,h := ‖∇v‖2 +

∑
F∈FC

h

1
hF
‖v‖2

F ∀v ∈ H1
D(Ω). (8)

⇒ Comparison between the residual dual norm and the energy norm

‖u − uh‖2
en = (σ(u − uh), ε(u − uh)).
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A posteriori analysis - Stress reconstruction
In general,

uk
h ∈ H1

D(Ω) but


σ(uk

h ) /∈ HHH(div,Ω)
divσ(uk

h ) 6= −f
σ(uk

h )n 6= gN on ΓN

where HHH(div,Ω) := {τ ∈ LLL2(Ω) | div τ ∈ L2(Ω)}.

Stress reconstruction:


σk

h ∈ HHH(div,Ω)
(divσk

h + f , vT )T = 0 ∀vT ∈ P0(T ),∀T ∈ Th

(σk
h n, vF )F = (gN , vF )F ∀vF ∈ P0(F ),∀F ∈ FN

h

σk
h = σk

h,dis + σk
h,reg︸ ︷︷ ︸

regularization

+ σk
h,lin︸︷︷︸

linearization

Local problems defined on patches using Arnold–
Falk–Winther FE space. [Arnold-Falk-Winther2007]

a

Figure: Patch around a vertex

⇒ Equilibrated, H-div conforming and weakly symmetric tensor σk
h



12/37

Introduction A posteriori error analysis Constitutive relations for joints Conclusions and perspectives

A posteriori analysis - Stress reconstruction
In general,

uk
h ∈ H1

D(Ω) but


σ(uk

h ) /∈ HHH(div,Ω)
divσ(uk

h ) 6= −f
σ(uk

h )n 6= gN on ΓN

where HHH(div,Ω) := {τ ∈ LLL2(Ω) | div τ ∈ L2(Ω)}.

Stress reconstruction:


σk

h ∈ HHH(div,Ω)
(divσk

h + f , vT )T = 0 ∀vT ∈ P0(T ),∀T ∈ Th

(σk
h n, vF )F = (gN , vF )F ∀vF ∈ P0(F ),∀F ∈ FN

h

σk
h = σk

h,dis + σk
h,reg︸ ︷︷ ︸

regularization

+ σk
h,lin︸︷︷︸

linearization

Local problems defined on patches using Arnold–
Falk–Winther FE space. [Arnold-Falk-Winther2007]

a

Figure: Patch around a vertex

⇒ Equilibrated, H-div conforming and weakly symmetric tensor σk
h



13/37

Introduction A posteriori error analysis Constitutive relations for joints Conclusions and perspectives

Local estimators
• Stress estimator:

σk
h,dis 6= σ(uk

h ) ⇒ ηk
str,T := ‖σk

h,dis − σ(uk
h )‖T

• Oscillation and Neumann estimators:

divσk
h 6= −f ⇒ ηk

osc,T := hT

π

∥∥f − divσk
h
∥∥

T

σk
h n 6= gN on ΓN ⇒ ηk

Neu,T :=
∑

F∈FC
T

Ct,T ,F h1/2
F

∥∥gN − σk
h n
∥∥

F

• Contact estimator:
σk

h,dis,n 6=
[
Pγ(uk

h )
]
R− ⇒ ηk

cnt,T :=
∑

F∈FC
T

h1/2
F

∥∥[Pγ(uk
h )
]
R− − σ

k
h,dis,n

∥∥
F

• Regularization and linearization estimators:

ηk
reg1,T := ‖σk

h,reg‖T and ηk
reg2,T :=

∑
F∈FC

T

h1/2
F

∥∥σk
h,reg,n

∥∥
F

ηk
lin1,T := ‖σk

h,lin‖T and ηk
lin2,T :=

∑
F∈FC

T

h1/2
F

∥∥σk
h,lin,n

∥∥
F
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A posteriori analysis
Theorem (A posteriori error estimate)

∥∥R(uk
h )
∥∥
∗
≤

(∑
T∈Th

(
(ηk

a,T )2 + (ηk
b,T )2))1/2

where

ηk
a,T := ηk

osc,T + ηk
str,T + ηk

Neu,T + ηk
reg1,T + ηk

lin1,T ,

ηk
a,T := ηk

cnt,T + ηk
reg2,T + ηk

lin2,T .

Corollary (A posteriori error estimate)∥∥R(uk
h )
∥∥
∗
≤
(

(ηk
a )2 + (ηk

b )2
)1/2

where

ηk
a := ηk

osc + ηk
str + ηk

Neu + ηk
reg1 + ηk

lin1,

ηk
a := ηk

cnt + ηk
reg2 + ηk

lin2,
ηk
• :=

(∑
T∈Th

(
ηk
•,T
)2

)1/2

.
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A posteriori analysis
Theorem (A posteriori error estimate)

∥∥R(uk
h )
∥∥
∗
≤

(∑
T∈Th

(
(ηk

a,T )2 + (ηk
b,T )2))1/2

where

ηk
a,T := ηk

osc,T + ηk
str,T + ηk

Neu,T + ηk
reg1,T + ηk

lin1,T ,

ηk
a,T := ηk

cnt,T + ηk
reg2,T + ηk

lin2,T .

Adaptive algorithm
• Only the element where ηtot,T :=

(
(ηk

a,T )2 + (ηk
b,T )2)1/2 is high are refined.

• The number of Newton iterations and the value of δ can be fixed
automatically by the algorithm using some stopping criteria:

ηk
reg1 + ηk

reg2 ≤ γreg(ηk
osc + ηk

str + ηk
Neu + ηk

cnt + ηk
lin1 + ηk

lin2), (9)

ηk
lin1 + ηk

lin2 ≤ γlin(ηk
osc + ηk

str + ηk
Neu + ηk

cnt). (10)
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Numerical results

ΓD ΓC

ΓN,1

ΓN,2

gNf

Figure: Vertical displacement in the deformed domain (amplification factor = 5):
whole domain (left) and displacement of the contact boundary (right).
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Adaptive mesh refinement

ΓD ΓC

ΓN,1

ΓN,2

gNf
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Adaptive VS Uniform refinement

‖v‖2
en := (σ(v), ε(v))
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Stopping criteria

Initial 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Nreg 7 0 1 0 0 0 0 0 0 0 0 0
Nlin 26 2 4 5 3 4 4 4 5 8 8 7

Table: Number of regularization iterations Nreg and Newton iterations Nlin at each
refinement step of the adaptive algorithm with the stopping criteria (8) and (9).

Figure: 3rd (left) and 9th (right) adaptively refined mesh
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Contact problem (without cohesive forces)

Ω
ΓD

ΓC

ΓN

n divσ(u) + f = 0 in Ω, (11a)
σ(u) = EEE ε(u) in Ω, (11b)

u = 0 on ΓD , (11c)
σ(u)n = gN on ΓN , (11d)

σn(u) = [Pγ(u)]R− on ΓC , (11e)
σt(u) = 0 on ΓC . (11f)

un

σn

ut

σt

Find uh ∈ Vh such that(
σ(uh), ε(vh)

)
−
([

Pγ(uh)
]
R− , vh,n

)
ΓC

= (f , vh) + (gN , vh)ΓN ∀vh ∈ Vh. (12)
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Joint problem with cohesive forces

Ω2Ω1

ΓD

ΓN

ΓC

Ω
n

n divσ(u) + f = 0 in Ω \ ΓC , (13a)
σ(u) = EEE ε(u) in Ω \ ΓC , (13b)

u = 0 on ΓD , (13c)
σ(u)n = gN on ΓN , (13d)
σ = F (δ) on ΓC , (13e)

The displacement jump δ and the force (σn ≡ σ) between the two sides of the
interface ΓC are related through a mechanical constitutive relation.

δc

σc

δn

σn

Dugdale model

δ = −JuK := −(u1 − u2)

δ = (δn, δt1 , δt2 )T
δ̃c δc

σc

δn

σn

Bilinear model

Find uh ∈ Vh such that

(σ(uh), ε(vh))Ω\ΓC + (F(δh), δv
h )ΓC = (f , vh)Ω\ΓC + (gN , vh)ΓN ∀vh ∈ Vh, (14)

where δh := −JuhK and δv
h := −JvhK.



22/37

Introduction A posteriori error analysis Constitutive relations for joints Conclusions and perspectives

• Generalized standard materials −→ [Halphen-Quoc Son1975]
Geomaterials ⇒ It establishes a class of elasto-plastic materials that satisfy the
Clausius–Duhem inequality, and offers an energetic formulation for constructing
a constitutive relation.

Adaptation to joint modeling⇒ Variational framework (Energy minimization)
[Francfort-Marigo1998]

Ingredients (joint modeling):
◦ State variables (δ, a)
◦ Surface energy density ψ(δ, a)
◦ Reversibility domain K (⇒ Potential of dissipation φ(A))

Features (joint modeling):
I The stress between the two sides of the interface and the thermodynamical

internal forces are obtained by differentiation:

σ =
∂ψ

∂δ
A =

∂ψ

∂a
I The reversibility domain K is convex
I The flow rule for a follows the normality rule
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Example of shear test

Source: TEGG Lab - EDF [Unpublished]
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Results of a shear test

Figure: Typical curves of shear tests with fixed compression for joints: evolution of the
shear stress (top) and of the normal displacement (bottom).
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Existing constitutive relations in code aster

• JOINT MECA RUPT:
Rupture in traction

. Rupture without plasticity!

• JOINT MECA FROT:
Mohr–Coulomb non-associative
standard law
. Friction without rupture!

[R7.01.25] Lois de comportement des joints des barrages: JOINT MECA RUPT et JOINT MECA FROT,
code aster
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Coupling plasticity and damage

Goals

I Phenomena to be reproduced: hardening/softening in traction and
shear, dilatancy, ...

I To keep the normal flow rule for the evolution of plasticity
I To have a minimal number of parameters

• State variables: displacement jump δ ∈ R3, plastic component p ∈ R3,
and damage variable α ∈ [0, 1]
• ψ(δ, p, α) is the surface energy density function, convex with respect to δ,

p, α
• By differentiation, we obtain the thermodynamical forces related to the

state variables:

σ = ∂ψ

∂δ
X = −∂ψ

∂p Y = −∂ψ
∂α

[Marigo-Kazymyrenko2019]
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ψ(δ, p, α) = Kn
(δn − pn)2

2 + Kt
‖δt − pt‖2

2 + An(α) (pn)2

2 + At (α)‖pt‖2

2

• Kinematic hardening with the coupling of plasticity and damage, and
damage functions defined by As (α) := Bs

(1− α)m1

αm2
, s ∈ {n, t}

• Reversibility domains (fixed in the thermodynamical space):

Kσ

σn

σt

KX

Xn

Xt

0 D
0

Y

σ = X + A(α)p ‖Xt‖+ µXn − c ≤ 0 0 ≤ Y ≤ D

• Irreversibility of damage (α̇ ≥ 0)

• Simultaneous evolution of p and α
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Numerical results
• Shear test with fixed compression

δt

σt

δ n
∼
µδ

t

δt

δn

• Traction test

δn

σn



29/37

Introduction A posteriori error analysis Constitutive relations for joints Conclusions and perspectives

Some possible modifications

I Direct modification of the plasticity criterion (⇒ stress elastic domain Kσ)

Kσ

σn

σt

[Mouzannar2016]

I Addition of hyperelasticity

Kn(δn),Kn(δt),Kn(δn, δt) Kt (δn),Kt (δt),Kt (δn, δt)
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Model with hyperelasticity

ψ = Kn(δn)(δn − pn)2

2 +Kt (δn)‖δt − pt‖2

2 + An(α) (pn)2

2 + At (α)‖pt‖2

2

• Two new parameters: βn ≥ 0 and βt ≥ 0

Ks (δn) := Ks,0

2Ks,0βsδn + 1 s ∈ {n, t}

• Domain transformation:

KX

Xn

Xt

‖Xt‖+ aXn − b ≤ 0

Kσ

σn

σt

‖σt‖ −
√

A− Bσn − C ≤ 0
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Model with hyperelasticity

ψ = Kn(δn)(δn − pn)2

2 +Kt (δn)‖δt − pt‖2

2 + An(α) (pn)2

2 + At (α)‖pt‖2

2

• Cyclic shear loading (asymptotic behavior, i.e., without damage):

−δ̃t δ̃tδt

δn

With hyperelasticity

−δ̃t δ̃t
δt

δn

Without hyperelasticity
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An example on a dam

ψ = Kn,0

2Kn,0βnδn + 1
(δn − pn)2

2 + Kt,0

2Kt,0βtδn + 1
‖δt − pt‖2

2

We consider the 2D dam model shown by the figures (validation test
ssnp142a): the height of the dam is 10 m, the length of the joint is 5 m, the
length of the top part of the dam is 1.5 m, and the rock foundation has length
15 m and height 5 m.

Rock

Dam

Joint
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Figure: Vertical displacement δn (left) and normal stress σn (right) without lateral
water pressure.
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Figure: Vertical displacement δn (left) and normal stress σn (right) with lateral water
pressure (9 meters) and imposed pressure inside of the joint.
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Extension to geomaterials

φ(ε, p) = 1
2 K(Trε)(Trε− Trp)2 + µ(Trε)‖εD − pD‖2

σ = X −
(
βm ( Xm︸︷︷︸

:=TrX/3

)2 + βD ‖ XD︸︷︷︸
:=X−XmI2

‖2
)

1√
6
‖XD‖+ aXm − b ≤ 0 ⇒ 1√

6
‖σD‖ −

√
A− Bσm − C ≤ 0

[Mehranpour et al.2016] [Ghasempour et al.2017]
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Conclusions:
I A posteriori estimate of the error measured with a dual norm for the

contact problem without friction via stress reconstruction.
I We distinguish the different error components and we propose an adaptive

algorithm with stopping criteria.
I Better asymptotic convergence with adaptive refinement.
I Joint model coupling plasticity and damage.
I Joint model with hyperelasticity: modification of the shape of plasticity

criterion; stabilization of dilatancy in cycling loadings.

Perspectives:
� Improve a posteriori error analysis to contact problem with cohesive forces.
� Continue the analysis and study of the unified constitutive relation for

joints.
� Industrial application on hydraulic structures.

Thank you for your attention!
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Equilibrated stress reconstruction

Find (σa
h , r a

h ,λ
a
h) ∈ Σa

h,N,C ×Ua
h ×Λa

h such that:

(σa
h , τh)ωa + (r a

h , div τh)ωa + (λa
h, τh)ωa = (ψaσ(uh), τh)ωa (15a)

(divσa
h , vh)ωa = (−ψaf + σ(uh)∇ψa , vh)ωa (15b)

(σa
h ,µh)ωa = 0 (15c)

for all (τh, vh,µh) ∈ Σa
h ×Ua

h ×Λa
h.

σh :=
∑
a∈Vh

σa
h

◦ Σa
h := {τh ∈ PPPp(ωa) ∩HHH(div, ωa) : Hom. cond.}

◦ Σa
h,N,C := {τh ∈ PPPp(ωa) ∩HHH(div, ωa) : Non-hom./Hom. cond.}

◦ Ua
h := Pp−1(ωa) / Pp−1(ωa) ∩ (RMd )⊥

◦ Λa
h := {µh ∈ PPPp−1(ωa) : µh = −µh}

a
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Constitutive relation for joints - Hypotheses
• Cohesive zone model (CZM) −→ [Dugdale1960], [Barenblatt1962]

Ω2Ω1
ΓC

Ω
n δ = −JuK := −(u1 − u2)

δ = (δn, δt1 , δt2 )T

adhesion cohesive zone fissure

The displacement jump δ and the force between the two sides of the interface
ΓC are related through a mechanical constitutive relation:

δc

σc

δn

σn

Dugdale model

σ = (σn, σt1 , σt2 )T = F (δ)

δc

σc

δn

σn

Softening linear model

δ̃c δc

σc

δn

σn

Bilinear model

[R3.06.09] Élements finis de joint mécaniques et éléments finis de joint couplé hydromécanique, code aster
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Constitutive relation for joints - Hypotheses
• Cohesive zone model (CZM) −→ [Dugdale1960], [Barenblatt1962]

Ω2Ω1
ΓC

Ω
n δ = −JuK := −(u1 − u2)

δ = (δn, δt1 , δt2 )T

u1 u1

u1u1u2 u2

u2u2

δ

δ

δ

δ

n
t1

t2

The displacement jump δ and the force between the two sides of the interface
ΓC are related through a mechanical constitutive relation:

δc

σc

δn

σn

Dugdale model

σ = (σn, σt1 , σt2 )T = F (δ)

δc

σc

δn

σn

Softening linear model

δ̃c δc

σc

δn

σn

Bilinear model

[R3.06.09] Élements finis de joint mécaniques et éléments finis de joint couplé hydromécanique, code aster
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Joint finite elements

X

Y

nt

X

Y

nt
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Constitutive relation for joints - Hypotheses

• Variational framework −→ Energy minimization [Francfort-Marigo1998]

Ω2Ω1
ΓC

Ω
n δ = −JuK := −(u1 − u2)

δ = (δn, δt1 , δt2 )T

min
u

Etot(u)

Etot(u) = Etot(u, δ) := Eel(u) + Esur(δ)−Wext(u)

◦ Eel(u) :=
∫

Ω\Γ φ(ε(u)) dΩ =
∫

Ω\Γ

(
1
2ε(u)EEE ε(u)

)
dΩ is the elastic energy,

◦ Esur(δ) :=
∫

Γ ψ(δ) dΓ is the surface energy,

◦ Wext(u) =
∫

Ω\Γ f u dΩ +
∫

ΓN
gN u dΓ is the work of the external forces

Fint(u, v) = Fint(v) ∀ťv
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Existing laws in code aster

• JOINT MECA RUPT: Rupture in
traction

ψn(δn) = A(δn)ψcon
n (δn) + B(δn)ψlin

n (δn)

+ C(δn)ψdis
n (δn)

σmax

δn

σn

. Rupture without plasticity!

• JOINT MECA FROT:
Mohr–Coulomb non-associative
standard law

ψ(δ, pt) = ψn(δn) + Kt
‖δt − pt‖2

2
Conic surface of charge du type Drucker–Prager
(with possibly isotropic hardening):

‖σt‖ + µσn − c − Kλ = 0

σ̄t

δt

σt

δ̄n

δt

δn

. Friction without rupture!

[R7.01.25] Lois de comportement des joints des barrages: JOINT MECA RUPT et JOINT MECA FROT,
code aster
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Parameters fitting

ψ(δ, p, α) = Kn
(δn − pn)2

2 + Kt
‖δt − pt‖2

2 + An(α) (pn)2

2 + At (α)‖pt‖2

2

Parameters of the model: Kn,Kt , Bn,Bt ,m1,m2, µ, c, D

◦ Kn > 0 and Kt > 0 → normal and tangential
rigidity

◦ µ > 0 and c ≥ 0 → shape of KX (friction
coefficient and residual adhesion)

KX

c
c/µ Xn

Xt

As (α) = Bs
(1− α)m1

αm2

◦ Bn and Bt → peaks
(tensile strength and
cohesion)

te
ns

ile
st

re
ng

th

Bn

δn

σn

co
he

sio
n

µ2Bn + Bt

δt

σt
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◦ m1 > 1 and 0 < m2 < 1 → damage evolution

δt

σt
m1 = 1
m1 = 2
m1 = 3
m1 = 4
m1 = 5

δt

σt
m2 = 0.1
m2 = 0.3
m2 = 0.5
m2 = 0.7
m2 = 0.9

◦ D → snapback

δt

σt
D = Kn/3
D = Kn

D = 5Kn/3
D = 7Kn/3 Evolution of the

tangential stress
in a shear test
with fixed com-
pression
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Possible modifications
I Modification of the plasticity criterion

[Ghasempour et al.2017]
[Mouzannar2016]

I Evolution of the plasticity criterion with damage

fX (X) = ‖Xt‖+ µXn − c ≤ 0

µ→ 0 with µ(α) or µ(Y )

KX

Xn

Xt

I Addition of hyperelasticity

Kn(δn),Kn(δt),Kn(δn, δt) Kt (δn),Kt (δt),Kt (δn, δt)
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• Relation between σ and X :{
σn = Xn + An(α)pn − βn(Xn + An(α)pn)2 − βt‖Xt + At (α)pt‖2

σt = Xt + At (α)pt

• Kσ is fixed during hyperelastic loadings

• The asymptotic dilatancy is related to the normal to Kσ

• Cyclic shear loading (asymptotic behavior, i.e., without damage):

−δ̃t δ̃tδt

δn

With hyperelasticity

−δ̃t δ̃t
δt

δn

Without hyperelasticity
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