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Motivation - Industrial context
� Engineering teams use finite element numerical

simulations to study large hydraulic structures
and evaluate their safety.

� Gleno (Italy, 1923), Malpasset (France, 1959)

� Concrete dams show different interface zones:
� concrete-rock contact in the foundation
� joints between the blocks of the dam
� joints in concrete
� ...

� Need for accurate simulations
Gleno

Malpasset
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A posteriori estimation background

A posteriori error estimation:

‖|u − uh|‖ ≤

(∑
T∈Th

ηT (uh)2

)1/2

where u is the exact solution of the considered problem, and uh is an
approximate solution. The error between the exact solution and the
approximate one is measured with ‖|u − uh|‖, where ‖| · |‖ is some norm.

• Error control
• Local and global efficiency (ηT (uh) ≤ C ‖|u − uh|‖TT

for every element T )
• Error localization
• Identification and separation of different components of the error
• Adaptive mesh refinement
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Unilateral contact problem

Ω
ΓD

ΓC

ΓN

n Strong formulation

∇ · σ(u) + f = 0 in Ω, (1a)
σ(u) = A : ε(u) in Ω, (1b)

u = 0 on ΓD , (1c)
σ(u)n = gN on ΓN , (1d)

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on ΓC , (1e)
σt(u) = 0 on ΓC , (1f)

◦ u : Ω(⊆ Rd )→ Rd , d ∈ {2, 3} is the unknown displacement

◦ ε(u) = (εij (u))ij , where εij (u) := 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, is the strain tensor

◦ σ(u) = A : ε(u) := λtrε(u)Id + 2µε(u) is the elasticity stress tensor
◦ f ∈ L2(Ω) and gN ∈ L2(ΓN ) are volume and surface forces, respectively
◦ u = unn + ut and σ(u)n = σn(u)n + σt(u) on ΓC
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Unilateral contact problem

Ω
ΓD

ΓC

ΓN

n Strong formulation

∇ · σ(u) + f = 0 in Ω, (1a)
σ(u) = A : ε(u) in Ω, (1b)

u = 0 on ΓD , (1c)
σ(u)n = gN on ΓN , (1d)

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on ΓC , (1e)
σt(u) = 0 on ΓC , (1f)

H1
D(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓD

}
K :=

{
v ∈ H1

D(Ω) : vn ≤ 0 on ΓC
}

Weak formulation
Find u ∈ K such that(

σ(u), ε(v − u)
)
≥ (f , v − u) + (gN , v − u)ΓN ∀v ∈ K . (2)
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Unilateral contact problem - Numerical approach

Let Th be a triangulation of Ω, Vh := H1
D(Ω) ∩Pp(Th), p ≥ 1, and [ · ]R− the

projection on the half-line of negative real numbers R−.

Nitsche-based method

Find uh ∈ Vh such that(
σ(uh), ε(vh)

)
−
([

Pn
1,γ(uh)

]
R− , v

n
h

)
ΓC

= (f , vh)+(gN , vh)ΓN ∀vh ∈ Vh,

where Pn
1,γ(uh) := σn(uh)− γun

h .

In order to solve this nonlinear problem

1. we regularize the projection
operator [ · ]R− with [ · ]reg,δ,

2. we use Netwon method.

x
δ−δ

[x ]R−

[x ]reg,δ
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A posteriori analysis
At the k-th iteration of the Newton algorithm, the error between u and uk

h is
measured by ∥∥R(uk

h )
∥∥

(H1
D (Ω))∗ := sup

v∈H1
D (Ω),

‖v‖C,h=1

〈R(uk
h ), v〉(H1

D (Ω))∗,H1
D (Ω)

where R(uk
h ) is the residual of uk

h , and ‖ · ‖C,h is a norm which takes into
account the boundary contact part.

uk
h ∈ H1

D(Ω) but σ(uk
h ) /∈ HHH(div,Ω)

Stress reconstruction: σk
h ∈ HHH(div,Ω)

σk
h = σk

h,1 + σk
h,2︸︷︷︸

regularization

+ σk
h,3︸︷︷︸

linearization

Each term is obtained through local problems de-
fined on patches around the vertices of the mesh.

a

Figure: Patch around a node
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A posteriori analysis

Theorem (A posteriori error estimate)

∥∥R(uk
h )
∥∥

(H1
D (Ω))∗ ≤

(∑
T∈Th

(ηk
tot,T )2

)1/2

where

ηk
tot,T := ηk

osc,T + ηk
str,T + ηk

Neu,T + ηk
cnt,T + ηk

reg,T + ηk
lin,T .

Adaptive algorithm
• Only the elements where ηtot,T is higher are refined.
• The number of Newton iterations and the value of δ can be fixed

automatically by the algorithm using some stopping criteria:

ηk
reg ≤ γreg(ηk

osc + ηk
str + ηk

Neu + ηk
cnt + ηk

lin), (3)

ηk
lin ≤ γlin(ηk

osc + ηk
str + ηk

Neu + ηk
cnt). (4)
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Numerical results

ΓD ΓC

ΓN,1

ΓN,2

gNf

Figure: Vertical displacement in the deformed domain (amplification factor = 5):
whole domain (left) and zoom near the contact boundary (right).
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Adaptive mesh refinement

ΓD ΓC

ΓN,1

ΓN,2

gNf
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Adaptive VS Uniform refinement

‖v‖en := (σ(v), ε(v))
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Conclusions:
• Nitsche-based method applied to the unilateral contact problem without

friction.
• Regularization and linearization steps.
• A posteriori estimate of the error measured with a dual norm.
• We distinguish the different error components.
• Better asymptotic convergence with adaptive refinement.

Perspectives:
• Extension to the unilateral problem with friction and bilateral problem.
• Extension to contact problem with cohesive forces.
• Industrial application on hydraulic structures.
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