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Motivation - Industrial context

m Engineering teams use finite element numerical 'A
simulations to study large hydraulic structures code_aster
and evaluate their safety.

m Gleno (Italy, 1923), Malpasset (France, 1959)

m Concrete dams show different interface zones:
[0 concrete-rock contact in the foundation
O joints between the blocks of the dam
O joints in concrete
o ...

m Need for accurate simulations Gleno

Malpasset
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Finite element approximation background

We consider a problem on a domain Q C RY, d > 1 which is expressed by some

Partial Differential Equations.

Strong formulation H Weak formulation H Approximated problem

PDE, Q, u € C°(Q) P, QuecV Ph, Th, un € Vi

o V is a space of function infinite-dimensional, V,, is a finite-dimensional
approximation of V

o u is the exact solution, uy is an approximated solution found using a
numerical method

o Ty is a spatial mesh, i.e., a partition of Q
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An example: Poisson problem in one-dimensional space

_ . du
Q= (a,b) CR, v := e
Strong formulation: Find u € C?() such that
u'+f=0 in Q (1a)
u=20 on 092 (1b)

Weak formulation: Find u € H3(Q) such that
(v, v') = (f,v) v € Hy(Q), (2)
where Hj(Q) := {v € H(Q)|v = 0 on 9Q}.
Approximated problem: Find uy € V}, such that
(uh, vi) = (f, va) Vih € Vp, (3)

where Vi, = {v, € C°(Q)|vs|+ € PP(T) VT € Tr}.

ves
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A posteriori estimation background

The error between the exact solution and the approximate solution is measured

with |||t — upl||, where ||| - ||| is some norm.
A priori error estimate: A posteriori error estimate:
1/2
k
llu — unll| < C(u)h o — w| < Z 0 (un)?

TEThH

Features of a good a posteriori error estimate:

® Error control

® Local efficiency (n7(un) < C|[|u — upl|| 1, for every element T)
® Error localization

® |dentification and separation of different components of the error

® Adaptive mesh refinement
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Elasto-static problem background

n
My
I'p

[¢]

Small deformation hypothesis

o Q is the domain which represents an elastic body (reference configuration)
u: QCRY) — RY, d € {2,3} is the unknown displacement

1 <6u,~ n ou;
2\ 0x;  Ox
o o(u) =A:e(u):= Atre(u)ly + 2ue(u) is the elasticity stress tensor

[e]

[e]

e(u) = (gij(u))i, where gj(u) := >, is the strain tensor
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Elasto-static problem background
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Small deformation hypothesis
o Q is the domain which represents an elastic body (reference configuration)

u: QCRY) — RY, d € {2,3} is the unknown displacement

[¢]

[e]

[e]

e(u) = (gij(u))i, where gj(u) := % <gi’ + g?), is the strain tensor
j i

o o(u) =A:e(u):= Atre(u)ly + 2ue(u) is the elasticity stress tensor

Elasto-static problem

80',“ .
Voo)+f=0 inQ (4a) o TH=0 inQ (%)
Y
u = up on rD, (4b) uj = up.j on I'D, (5b)
o(u)n = gy only  (4c) oin = gn.i on My (5¢)
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Unilateral contact problem

Strong formulation
Y
Mo V.ou)+f=0

o(u)=A:e(u)

u=0

o(u)n=gn

u" <0, o"(u) <0, o"(u)u" =0
o'(u)=0

f € L?(Q) represents volume forces

o

gn € L?(I'y) represents surface forces

o}

ou=u"n+u"onTlc¢

[¢]

o(u)n=0"(u)n+o*(u) on ¢

Conclusions and perspectives

(e]e]

in Q,
in Q,
on I'D,
on I'N,
onlc,

on r(_‘
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Unilateral contact problem
n Strong formulation
Y
Mo V-o(u)y+f=0 in Q,
o(u)=A:e(u) in Q,
u=20 on [p,
o(u)n=gn on Iy,
u" <0, o"(u) <0, o"(u)u" =0 on I,
o'(u)=0 onTl¢
Hp(Q):={veH(Q) : v=0onTp}
K = {VE HL(Q) : v'<O0on rc}
Weak formulation
Find u € K such that
(a(u),e(v—u)) > (f,v—u)+(gn, v — u)r, Vv e K.

(7)
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Unilateral contact problem - Numerical approach

Let 7, be a triangulation of Q, and Vi, := H5(Q) N PP(T5), p > 1. Moreover,
we define [-]g— as the projection on the half-line of negative real numbers R,

and the following operator
P, Vh—  1(T¢)
Vi = 0" (vh) — vy
The contact boundary condition (6e) can be rewritten as

0" (u) = [P ()], (8)

Nitsche-based method

Find u, € V; such that

(0'(Uh)7€(Vh))*([Pw(llh)]R,7 V;?)I_ = (f, vn)+(8n, vh)ry Yv, € V.

©
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Unilateral contact problem - Numerical approach

Nitsche-based method

Find u, € V; such that

(U(Uh)ﬂ?(Vh))*([Pw(uh)]R,, V;?)I_ = (f, va)+(8n, vi)ry Vv, € V.

@

In order to solve this nonlinear problem -4 J

1. we regularize the projection
operator [-]g— with [+]reg,s,

2. we use Netwon method.

At each step k > 1 we have to solve the linear problem: Find uf € V,, such that

(o(ur),e(vn)) — (P " (uh), vh)p, = (F,vi) + (g, w)ry,  Yvn € Vi (9)
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A posteriori analysis - Measure of the error

At the k-th iteration of the Newton algorithm, we define the residual operator
R(uh) € (Hp(R2))" by

(R(u),v) = (F.v) + (8w VI = (o(wh),e(v) + ([P ()], V") (10)

for all v € H3(RQ). Then, the error between u and uf is measured by the dual
norm

HR(UL‘)H Lo, = sup  (R(uf),v) (11)

(HL() !
vEHD(Q)y
[lvlic,n=1

where || - ||c,n is a norm which takes into account the boundary contact part:

2 2 1 2 1
IvliEs = Iwvi?+ > liviiF Vv € Hp(Q). (12)
FeFf
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The example of Poisson problem
The error is measured by

1€ = enY'|

= sup {(f, v) — (up, v')} ,

veH}(Q),
v lI=1

and we define the flux o(u) := u'.

® Properties of the exact solution:

u € Hy(Q) and o(u) € HY(Q)

® Properties of the approximated solution

up € Hy(Q) but o(un) ¢ H'(Q) in general

Conclusions and perspectives
(e]e)

(13)
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A posteriori analysis - Stress reconstruction

uf € Hp(Q)  but  o(uf) ¢ H(div,Q),
where H(div, Q) := {r € L*(Q) | V- T € L*(Q)}.

Stress reconstruction: of € H(div, Q)

k k k k
Op=0p1+ Op2 + O3
~~ ~~
regularization linearization
k
Oho — Oasd —0 A
k
op3 —0as k— +oo Figure: Patch around a node

Each term is obtained through local problems defined on patches around the

vertices of the mesh using the Arnold-Falk-Winther mixed finite element space.

— Equilibrated, H-div conforming and weakly symmetric tensor of

Unilateral contact problem A posteriori analysis Numerical results Conclusions and perspectives
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A posteriori analysis

THEOREM (A posteriori error estimate)

where

IR | - < | D Oe.7)?

TETH

kK. &k K K K K K
Ntot, T *= MNosc, T + Mlux, T + MNeu, T + Ndisc, T + Nreg, T + Miin, T

1/2

ey = T || Ty

nﬁuxﬁT = Hail;,l - O'(U//;)”T

n{\(leu,T = Z Ct,T,Fth/z llen — I gl

C
FeFg
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A posteriori analysis

THEOREM (A posteriori error estimate)

1/2
IR s - < (Z(nfot;f)

TETH

where

kK & K K K K K
Ntot, T = Nosc, T T Mlux, T T MNew, T + Ndisc, T + Mreg, T + "iin, T

her = 30 R [Puab)], — T2 [P )], |,

FeF<
1
Meg. 7 1= lotallr + Y b0kl
FeF¢
i, = llokslle+ > b ors
FeF<
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A posteriori analysis

THEOREM (A posteriori error estimate)

1/2

IR e < | D Cr.7)?

TETH

where

kK. &k K K K K K
Ntot, T = Nosc, T T Miux, T T MNew, T + Ndisc, T + Nreg, T + "iin, T

Adaptive algorithm
® Only the element where 7o, 7 is high are refined.

nfegj —0asd—0 and r]ﬁn_r — 0 as k — +o0

® The number of Newton iterations and the value of § can be fixed
automatically by the algorithm using some stopping criteria:
n::eg S ’YrEg(ngsc + nﬁux + 77l,\<|eu + ntli(isc + nlli(n)v (14)
77|Ii<n S ’Ylin(né(sc + nﬁux + nﬁeu + ncIJ(isc)' (15)
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Numerical results

IsoValue
u-0.0086
n
m-0.00164807
m-0.000257042
m0.00113399
m0.00252501
m0.00391604
m0.00530707
m0.00669809
m0.00808912
m0.00948015
m0.0129577

Figure: Vertical displacement in the deformed domain (amplification factor = 5):
whole domain (left) and zoom near the contact boundary (right).
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Adaptive mesh refinement
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Adaptive VS Uniform refinement
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Stopping criteria

‘ H Initial ‘ 1st ‘ 2nd ‘ 3rd ‘ 4th ‘ 5th ‘ 6th ‘ 7th ‘ 8th ‘ gth ‘ 10th ‘ 11th ‘

Nieg 7 0 1 0 0 0 0 0 0 0 0 0

Nm || 26 | 2 | 4 | 5 | 3 | 4| 4| 45 8] 8 | 7

Table: Number of regularization iterations Nreg and Newton iterations Nj, at each
refinement step of the adaptive algorithm with the stopping criteria.

-2
10 10-3 -
107°
106 -
-8 —— Tltot
10 —4— Tflux
10~ —4— Tdisc
11 —4—Theg
10
—4— in
—12 |
10-14 | 10
T T T T T T T T T
2 4 6 8 2 4 6 8 10 12
Newton iterations Newton iterations
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Conclusions:

® Nitsche-based method applied to the unilateral contact problem without
friction.

® Regularization and linearization steps.
® A posteriori estimate of the error measured with a dual norm.
® We distinguish the different error components.
® Better asymptotic convergence with adaptive refinement.
Perspectives:
® Extension to the unilateral problem with friction and bilateral problem.
® Extension to contact problem with cohesive forces.

® |ndustrial application on hydraulic structures.
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