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Motivation - Industrial context

� Engineering teams use finite element numerical
simulations to study large hydraulic structures
and evaluate their safety.

� Gleno (Italy, 1923), Malpasset (France, 1959)

� Concrete dams show different interface zones:
� concrete-rock contact in the foundation
� joints between the blocks of the dam
� joints in concrete
� ...

� Need for accurate simulations Gleno

Malpasset
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Finite element approximation background

We consider a problem on a domain Ω ⊆ Rd , d ≥ 1 which is expressed by some
Partial Differential Equations.

Strong formulation Weak formulation Approximated problem

PDE, Ω, u ∈ Cp(Ω) P, Ω, u ∈ V Ph, Th, uh ∈ Vh

◦ V is a space of function infinite-dimensional, Vh is a finite-dimensional
approximation of V
◦ u is the exact solution, uh is an approximated solution found using a

numerical method
◦ Th is a spatial mesh, i.e., a partition of Ω
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An example: Poisson problem in one-dimensional space

Ω = (a, b) ⊂ R, u′ := du
dx

Strong formulation: Find u ∈ C2(Ω) such that

u′′ + f = 0 in Ω (1a)
u = 0 on ∂Ω (1b)

Weak formulation: Find u ∈ H1
0 (Ω) such that

(u′, v ′) = (f , v) v ∈ H1
0 (Ω), (2)

where H1
0 (Ω) := {v ∈ H1(Ω)|v = 0 on ∂Ω}.

Approximated problem: Find uh ∈ Vh such that

(u′h, v ′h) = (f , vh) vh ∈ Vh, (3)

where Vh = {vh ∈ C0(Ω)|vh|T ∈ Pp(T ) ∀T ∈ Th}.
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A posteriori estimation background

The error between the exact solution and the approximate solution is measured
with ‖|u − uh|‖, where ‖| · |‖ is some norm.

A priori error estimate: A posteriori error estimate:

‖|u − uh|‖ ≤ C(u)hk ‖|u − uh|‖ ≤

(∑
T∈Th

ηT (uh)2

)1/2

Features of a good a posteriori error estimate:

• Error control
• Local efficiency (ηT (uh) ≤ C ‖|u − uh|‖TT

for every element T )
• Error localization
• Identification and separation of different components of the error
• Adaptive mesh refinement
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Elasto-static problem background

Ω
ΓD

ΓN

n

◦ Small deformation hypothesis
◦ Ω is the domain which represents an elastic body (reference configuration)
◦ u : Ω(⊆ Rd )→ Rd , d ∈ {2, 3} is the unknown displacement

◦ ε(u) = (εij (u))ij , where εij (u) := 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, is the strain tensor

◦ σ(u) = A : ε(u) := λtrε(u)Id + 2µε(u) is the elasticity stress tensor

Elasto-static problem

∇ · σ(u) + f = 0 in Ω, (4a)
u = uD on ΓD , (4b)

σ(u)n = gN on ΓN (4c)

∂σij

∂xj
+ fi = 0 in Ω, (5a)

ui = uD,i on ΓD , (5b)
σijnj = gN,i on ΓN (5c)
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Unilateral contact problem

Ω
ΓD

ΓC

ΓN

n Strong formulation

∇ · σ(u) + f = 0 in Ω, (6a)
σ(u) = A : ε(u) in Ω, (6b)

u = 0 on ΓD , (6c)
σ(u)n = gN on ΓN , (6d)

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on ΓC , (6e)
σt(u) = 0 on ΓC (6f)

◦ f ∈ L2(Ω) represents volume forces
◦ gN ∈ L2(ΓN ) represents surface forces
◦ u = unn + ut on ΓC

◦ σ(u)n = σn(u)n + σt(u) on ΓC
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Ω
ΓD

ΓC

ΓN

n Strong formulation

∇ · σ(u) + f = 0 in Ω, (6a)
σ(u) = A : ε(u) in Ω, (6b)

u = 0 on ΓD , (6c)
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un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on ΓC , (6e)
σt(u) = 0 on ΓC (6f)

H1
D(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓD

}
K :=

{
v ∈ H1

D(Ω) : vn ≤ 0 on ΓC
}

Weak formulation
Find u ∈ K such that(

σ(u), ε(v − u)
)
≥ (f , v − u) + (gN , v − u)ΓN ∀v ∈ K . (7)
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Unilateral contact problem - Numerical approach

Let Th be a triangulation of Ω, and Vh := H1
D(Ω) ∩Pp(Th), p ≥ 1. Moreover,

we define [ · ]R− as the projection on the half-line of negative real numbers R−,
and the following operator

Pγ : Vh → L2(ΓC )
vh 7→ σn(vh)− γvn

h .

The contact boundary condition (6e) can be rewritten as

σn(u) = [Pγ(u)]R− . (8)

Nitsche-based method

Find uh ∈ Vh such that(
σ(uh), ε(vh)

)
−
([

Pγ(uh)
]
R−
, vn

h

)
ΓC

= (f , vh)+(gN , vh)ΓN ∀vh ∈ Vh.
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Unilateral contact problem - Numerical approach

Nitsche-based method

Find uh ∈ Vh such that(
σ(uh), ε(vh)

)
−
([

Pγ(uh)
]
R−
, vn

h

)
ΓC

= (f , vh)+(gN , vh)ΓN ∀vh ∈ Vh.

In order to solve this nonlinear problem

1. we regularize the projection
operator [ · ]R− with [ · ]reg,δ,

2. we use Netwon method.

x
δ−δ

[x ]R−
[x ]reg,δ

At each step k ≥ 1 we have to solve the linear problem: Find uk
h ∈ Vh such that(

σ(uk
h ), ε(vh)

)
−
(
Pk−1

lin (uk
h ), vn

h
)

ΓC
= (f , vh) + (gN , vh)ΓN ∀vh ∈ Vh. (9)



11/20

Introduction Unilateral contact problem A posteriori analysis Numerical results Conclusions and perspectives

A posteriori analysis - Measure of the error

At the k-th iteration of the Newton algorithm, we define the residual operator
R(uk

h ) ∈ (H1
D(Ω))∗ by

〈R(uk
h ), v〉 := (f , v) + (gN , v)ΓN −

(
σ(uk

h ), ε(v)
)

+
([

Pγ(uk
h )
]
R−

, vn
)

ΓC
(10)

for all v ∈ H1
D(Ω). Then, the error between u and uk

h is measured by the dual
norm ∥∥R(uk

h )
∥∥

(H1
D (Ω))∗

:= sup
v∈H1

D (Ω),
‖v‖C,h=1

〈R(uk
h ), v〉 (11)

where ‖ · ‖C,h is a norm which takes into account the boundary contact part:

‖v‖2
C,h := ‖∇v‖2 +

∑
F∈FC

h

1
hF
‖v‖2

F ∀v ∈ H1
D(Ω). (12)
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The example of Poisson problem
The error is measured by∥∥(u − uh)′

∥∥ = sup
v∈H1

0 (Ω),
‖v′‖=1

{
(f , v)− (u′h, v ′)

}
, (13)

and we define the flux σ(u) := u′.
• Properties of the exact solution:

u ∈ H1
0 (Ω) and σ(u) ∈ H1(Ω)

• Properties of the approximated solution

uh ∈ H1
0 (Ω) but σ(uh) /∈ H1(Ω) in general
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A posteriori analysis - Stress reconstruction

uk
h ∈ H1

D(Ω) but σ(uk
h ) /∈ HHH(div,Ω),

where HHH(div,Ω) := {τ ∈ LLL2(Ω) | ∇ · τ ∈ L2(Ω)}.

Stress reconstruction: σk
h ∈ HHH(div,Ω)

σk
h = σk

h,1 + σk
h,2︸︷︷︸

regularization

+ σk
h,3︸︷︷︸

linearization

σk
h,2 → 0 as δ → 0

σk
h,3 → 0 as k → +∞

a

Figure: Patch around a node

Each term is obtained through local problems defined on patches around the
vertices of the mesh using the Arnold-Falk-Winther mixed finite element space.
→ Equilibrated, H-div conforming and weakly symmetric tensor σk

h
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A posteriori analysis

Theorem (A posteriori error estimate)

∥∥R(uk
h )
∥∥

(H1
D (Ω))∗

≤

(∑
T∈Th

(ηk
tot,T )2

)1/2

where

ηk
tot,T := ηk

osc,T + ηk
flux,T + ηk

Neu,T + ηk
disc,T + ηk

reg,T + ηk
lin,T .

ηk
osc,T := hT

π

∥∥f −Πp−1
T f

∥∥
T

ηk
flux,T := ‖σk

h,1 − σ(uk
h )‖T

ηk
Neu,T :=

∑
F∈FC

T

Ct,T ,F h1/2
F ‖gN −Πp

F gN‖F
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osc,T + ηk
flux,T + ηk
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disc,T + ηk

reg,T + ηk
lin,T .

ηk
disc,T :=

∑
F∈FC

T

h1/2
F

∥∥[Pγ(uk
h )
]
R−
− Πp

F

[
Pγ(uk

h )
]
R−

∥∥
F

ηk
reg,T := ‖σk

h,2‖T +
∑

F∈FC
T

h1/2
F

∥∥σk,n
h,2

∥∥
F

ηk
lin,T := ‖σk

h,3‖T +
∑

F∈FC
T

h1/2
F

∥∥σk,n
h,3

∥∥
F
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Adaptive algorithm
• Only the element where ηtot,T is high are refined.

ηk
reg,T → 0 as δ → 0 and ηk

lin,T → 0 as k → +∞

• The number of Newton iterations and the value of δ can be fixed
automatically by the algorithm using some stopping criteria:

ηk
reg ≤ γreg(ηk

osc + ηk
flux + ηk

Neu + ηk
disc + ηk

lin), (14)

ηk
lin ≤ γlin(ηk

osc + ηk
flux + ηk

Neu + ηk
disc). (15)
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Numerical results

ΓD ΓC

ΓN,1

ΓN,2

gNf

Figure: Vertical displacement in the deformed domain (amplification factor = 5):
whole domain (left) and zoom near the contact boundary (right).
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Adaptive mesh refinement

ΓD ΓC

ΓN,1

ΓN,2

gNf
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Adaptive VS Uniform refinement

‖v‖en := (σ(v), ε(v))



18/20

Introduction Unilateral contact problem A posteriori analysis Numerical results Conclusions and perspectives

Stopping criteria

Initial 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Nreg 7 0 1 0 0 0 0 0 0 0 0 0
Nlin 26 2 4 5 3 4 4 4 5 8 8 7

Table: Number of regularization iterations Nreg and Newton iterations Nlin at each
refinement step of the adaptive algorithm with the stopping criteria.
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Conclusions:
• Nitsche-based method applied to the unilateral contact problem without

friction.
• Regularization and linearization steps.
• A posteriori estimate of the error measured with a dual norm.
• We distinguish the different error components.
• Better asymptotic convergence with adaptive refinement.

Perspectives:
• Extension to the unilateral problem with friction and bilateral problem.
• Extension to contact problem with cohesive forces.
• Industrial application on hydraulic structures.
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