Unilateral contact problem 000 A posteriori analysis 0000 Numerical results

Conclusions and perspectives

A Posteriori Error Estimation via Equilibrated Stress Reconstruction for Unilateral Contact Problems

Ilaria Fontana in collaboration with Daniele A. Di Pietro, and Kyrylo Kazymyrenko

Udine, 3 June 2021

Introduction	Unilateral contact problem	A posteriori analysis	Numerical results	Conclusions and perspectives
00000	000	0000	0000	00

Unilateral contact problem

A posteriori analysis

Numerical results

Conclusions and perspectives

Unilateral contact problem 000 A posteriori analysis 0000 Numerical results

Conclusions and perspectives

Motivation - Industrial context

- Engineering teams use finite element numerical simulations to study large hydraulic structures and evaluate their safety.
- Gleno (Italy, 1923), Malpasset (France, 1959)
- Concrete dams show different interface zones:
 - $\hfill\square$ concrete-rock contact in the foundation
 - $\hfill\square$ joints between the blocks of the dam
 - joints in concrete
 - □ ...
- Need for accurate simulations

Gleno

Malpasset

Unilateral contact problem
000

A posteriori analysis 0000 Numerical results

Conclusions and perspectives

Finite element approximation background

We consider a problem on a domain $\Omega \subseteq \mathbb{R}^d$, $d \ge 1$ which is expressed by some Partial Differential Equations.

- $\circ~{\pmb V}$ is a space of function infinite-dimensional, ${\pmb V}_h$ is a finite-dimensional approximation of ${\pmb V}$
- *u* is the *exact solution*, *u_h* is an *approximated solution* found using a numerical method
- \mathcal{T}_h is a spatial mesh, i.e., a partition of Ω

ı	Unilateral contact problem	A posteriori analysis
	000	0000

Numerical results

Conclusions and perspectives

An example: Poisson problem in one-dimensional space

$$\Omega = (a, b) \subset \mathbb{R}, \ u' := rac{\mathrm{d} u}{\mathrm{d} x}$$

Strong formulation: Find $u \in C^2(\Omega)$ such that

$$u'' + f = 0 \qquad \text{in } \Omega \tag{1a}$$

u = 0 on $\partial \Omega$ (1b)

Weak formulation: Find $u \in H_0^1(\Omega)$ such that

$$(u', v') = (f, v) \qquad v \in H_0^1(\Omega),$$
 (2)

where $H_0^1(\Omega) := \{ v \in H^1(\Omega) | v = 0 \text{ on } \partial \Omega \}.$

Approximated problem: Find $u_h \in V_h$ such that

$$(u'_h, v'_h) = (f, v_h) \qquad v_h \in V_h, \tag{3}$$

where $V_h = \{v_h \in \mathcal{C}^0(\overline{\Omega}) | v_h |_T \in \mathcal{P}^p(T) \ \forall T \in \mathcal{T}_h\}.$

Introduction

Unilateral contact problem
000

A posteriori analysis 0000 Numerical results 0000

1

Conclusions and perspectives

1/2

A posteriori estimation background

The error between the exact solution and the approximate solution is measured with $||| u - u_h |||$, where $||| \cdot |||$ is some norm.

A priori error estimate: A posteriori error estimate:

$$\|\|\boldsymbol{u}-\boldsymbol{u}_h\|\| \leq C(\boldsymbol{u})h^k \qquad \|\|\boldsymbol{u}-\boldsymbol{u}_h\|\| \leq \left(\sum_{\tau\in\mathcal{T}_h}\eta_{\tau}(\boldsymbol{u}_h)^2\right)^{\frac{1}{2}}$$

Features of a good a posteriori error estimate:

- Error control
- Local efficiency $(\eta_T(u_h) \leq C |||u u_h|||_{\mathcal{T}_T}$ for every element T)
- Error localization
- Identification and separation of different components of the error
- Adaptive mesh refinement

Introduction	Unilateral contact problem	A posteriori analysis	Numerical results	Conclusions and perspectives
00000	000	0000	0000	00

Elasto-static problem background

- Small deformation hypothesis
- $\circ~\Omega$ is the domain which represents an elastic body (reference configuration)
- $\circ~ \textbf{\textit{u}} \colon \Omega(\subseteq \mathbb{R}^d) \to \mathbb{R}^d,~ d \in \{2,3\}$ is the unknown displacement

•
$$\varepsilon(\boldsymbol{u}) = (\varepsilon_{ij}(\boldsymbol{u}))_{ij}$$
, where $\varepsilon_{ij}(\boldsymbol{u}) := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$, is the strain tensor
• $\sigma(\boldsymbol{u}) = \boldsymbol{A} : \varepsilon(\boldsymbol{u}) := \lambda \operatorname{tr} \varepsilon(\boldsymbol{u}) \boldsymbol{I}_d + 2\mu\varepsilon(\boldsymbol{u})$ is the elasticity stress tensor

Introduction	Unilateral contact problem	A posteriori analysis	Numerical results	Conclusions and perspectives
00000	000	0000	0000	00

Elasto-static problem background

- Small deformation hypothesis
- $\circ~\Omega$ is the domain which represents an elastic body (reference configuration)
- $\circ~$ $\textit{\textbf{u}}\colon \Omega(\subseteq \mathbb{R}^d) \to \mathbb{R}^d$, $d \in \{2,3\}$ is the unknown displacement

•
$$\varepsilon(\boldsymbol{u}) = (\varepsilon_{ij}(\boldsymbol{u}))_{ij}$$
, where $\varepsilon_{ij}(\boldsymbol{u}) := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$, is the strain tensor
• $\sigma(\boldsymbol{u}) = \boldsymbol{A} : \varepsilon(\boldsymbol{u}) := \lambda \operatorname{tr} \varepsilon(\boldsymbol{u}) \boldsymbol{I}_d + 2\mu\varepsilon(\boldsymbol{u})$ is the elasticity stress tensor

Elasto-static problem

 $\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}) + \boldsymbol{f} = \boldsymbol{0} \quad \text{in } \Omega, \quad (4a) \qquad \frac{\partial \sigma_{ij}}{\partial x_j} + f_i = \boldsymbol{0} \quad \text{in } \Omega, \quad (5a)$ $\boldsymbol{u} = \boldsymbol{u}_D \quad \text{on } \Gamma_D, \quad (4b) \qquad \boldsymbol{u}_i = \boldsymbol{u}_{D,i} \quad \text{on } \Gamma_D, \quad (5b)$ $\boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{n} = \boldsymbol{g}_N \quad \text{on } \Gamma_N \quad (4c) \qquad \sigma_{ij}\boldsymbol{n}_j = \boldsymbol{g}_{N,i} \quad \text{on } \Gamma_N \quad (5c)$

In	tr	od	lu	cti	0	n	
0	0	0	0	0			

Unilateral contact problem

A posteriori analysis 0000 Numerical results 0000

Conclusions and perspectives

Unilateral contact problem

Strong formulation

$oldsymbol{ abla} \cdot oldsymbol{\sigma}(oldsymbol{u}) + oldsymbol{f} = oldsymbol{0}$	$\text{ in }\Omega,$	(6a)
--	----------------------	------

$$\sigma(u) = A : \varepsilon(u)$$
 in Ω , (6b)

u = 0 on Γ_D , (6c)

$$\sigma(u)n = g_N$$
 on Γ_N , (6d)

$$u^n \leq 0, \ \sigma^n(\boldsymbol{u}) \leq 0, \ \sigma^n(\boldsymbol{u}) u^n = 0 \qquad \text{on } \Gamma_C,$$
 (6e)

$$\boldsymbol{\sigma}^{t}(\boldsymbol{u}) = \boldsymbol{0} \qquad \text{on } \boldsymbol{\Gamma}_{C} \qquad (\text{6f})$$

- $f \in L^2(\Omega)$ represents volume forces
- $g_N \in L^2(\Gamma_N)$ represents surface forces
- $\boldsymbol{u} = u^n \boldsymbol{n} + \boldsymbol{u}^t$ on Γ_c
- $\sigma(u)n = \sigma^n(u)n + \sigma^t(u)$ on Γ_c

Unilateral	contact	problen
000		

A posteriori analysis 0000 Numerical results

Conclusions and perspectives

Unilateral contact problem

Strong formulation

- $\boldsymbol{
 abla}\cdot\boldsymbol{\sigma}(\boldsymbol{u})+\boldsymbol{f}=\boldsymbol{0}$ in $\Omega,$ (6a)
 - $\sigma(u) = \mathbf{A} : \varepsilon(u)$ in Ω , (6b)
 - $\boldsymbol{u} = \boldsymbol{0}$ on Γ_D , (6c)
 - $\sigma(\boldsymbol{u})\boldsymbol{n} = \boldsymbol{g}_N \quad \text{on } \Gamma_N, \quad (6d)$
- $u^n \leq 0, \ \sigma^n(\boldsymbol{u}) \leq 0, \ \sigma^n(\boldsymbol{u}) u^n = 0 \qquad \text{on } \Gamma_C,$ (6e)
 - $\boldsymbol{\sigma}^{t}(\boldsymbol{u}) = \boldsymbol{0} \qquad \text{on } \boldsymbol{\Gamma}_{C} \qquad (6f)$

$$\begin{split} \boldsymbol{H}_{D}^{1}(\Omega) &:= \left\{ \boldsymbol{v} \in \boldsymbol{H}^{1}(\Omega) \ : \ \boldsymbol{v} = \boldsymbol{0} \text{ on } \boldsymbol{\Gamma}_{D} \right\} \\ \boldsymbol{K} &:= \left\{ \boldsymbol{v} \in \boldsymbol{H}_{D}^{1}(\Omega) \ : \ \boldsymbol{v}^{n} \leq \boldsymbol{0} \text{ on } \boldsymbol{\Gamma}_{C} \right\} \end{split}$$

Weak formulation

Find $\textbf{\textit{u}} \in \textbf{\textit{K}}$ such that

$$(\sigma(\boldsymbol{u}), \varepsilon(\boldsymbol{v}-\boldsymbol{u})) \geq (\boldsymbol{f}, \boldsymbol{v}-\boldsymbol{u}) + (\boldsymbol{g}_N, \boldsymbol{v}-\boldsymbol{u})_{\Gamma_N} \quad \forall \boldsymbol{v} \in \boldsymbol{K}.$$
 (*

 Unilateral contact problem
 A posteriori analysis
 Numerical results
 Conclusions and pers

 0
 0
 0
 0000
 0000
 000

Unilateral contact problem - Numerical approach

Let \mathcal{T}_h be a triangulation of Ω , and $V_h := H_D^1(\Omega) \cap \mathcal{P}^p(\mathcal{T}_h)$, $p \ge 1$. Moreover, we define $[\cdot]_{\mathbb{R}^-}$ as the projection on the half-line of negative real numbers \mathbb{R}^- , and the following operator

$$egin{aligned} & {\mathcal P}_\gamma\colon \, {oldsymbol V}_h & o \ L^2({\Gamma}_C) \ & {oldsymbol v}_h &\mapsto \sigma^n({oldsymbol v}_h) - \gamma v_h^n \end{aligned}$$

The contact boundary condition (6e) can be rewritten as

$$\sigma^{n}(\boldsymbol{u}) = [P_{\gamma}(\boldsymbol{u})]_{\mathbb{R}^{-}}.$$
(8)

Nitsche-based method

Find $u_h \in V_h$ such that

$$(\sigma(u_h), \varepsilon(v_h)) - ([P_{\gamma}(u_h)]_{\mathbb{R}^-}, v_h^n)_{\Gamma_C} = (f, v_h) + (g_N, v_h)_{\Gamma_N} \quad \forall v_h \in V_h.$$

Unilateral contact problem

A posteriori analysis 0000 Numerical results

 $-\delta$

Conclusions and perspectives

Unilateral contact problem - Numerical approach

Nitsche-based method

Find $\boldsymbol{u}_h \in \boldsymbol{V}_h$ such that

$$ig(\sigma(oldsymbol{u}_h),arepsilon(oldsymbol{v}_h)ig)-ig(ig[P_\gamma(oldsymbol{u}_h)ig]_{\mathbb{R}^-},oldsymbol{v}_h^nig)_{\Gamma_C}=(oldsymbol{f},oldsymbol{v}_h)+(oldsymbol{g}_N,oldsymbol{v}_h)_{\Gamma_N}\qquadoralloldsymbol{v}_h\inoldsymbol{V}_h.$$

In order to solve this nonlinear problem

- 1. we regularize the projection operator $[\cdot]_{\mathbb{R}^-}$ with $[\cdot]_{\text{reg},\delta}$,
- 2. we use Netwon method.

At each step $k \ge 1$ we have to solve the linear problem: Find $\boldsymbol{u}_h^k \in \boldsymbol{V}_h$ such that

$$\left(\boldsymbol{\sigma}(\boldsymbol{u}_{h}^{k}),\varepsilon(\boldsymbol{v}_{h})\right)-\left(\boldsymbol{P}_{\text{lin}}^{k-1}(\boldsymbol{u}_{h}^{k}),\boldsymbol{v}_{h}^{n}\right)_{\Gamma_{\mathcal{C}}}=(\boldsymbol{f},\boldsymbol{v}_{h})+(\boldsymbol{g}_{N},\boldsymbol{v}_{h})_{\Gamma_{N}}\qquad\forall\boldsymbol{v}_{h}\in\boldsymbol{V}_{h}.$$
 (9)

10/20

 $\begin{bmatrix} x \end{bmatrix}_{\mathbb{R}^{-}} \\ \begin{bmatrix} x \end{bmatrix}_{\mathrm{reg},\delta}$

nilateral contact problem

A posteriori analysis •000 Numerical results

Conclusions and perspectives

A posteriori analysis - Measure of the error

At the k-th iteration of the Newton algorithm, we define the residual operator $\mathcal{R}(u_h^k) \in (H_D^1(\Omega))^*$ by

$$\langle \mathcal{R}(\boldsymbol{u}_{h}^{k}), \boldsymbol{v} \rangle := (\boldsymbol{f}, \boldsymbol{v}) + (\boldsymbol{g}_{N}, \boldsymbol{v})_{\Gamma_{N}} - (\boldsymbol{\sigma}(\boldsymbol{u}_{h}^{k}), \boldsymbol{\varepsilon}(\boldsymbol{v})) + \left(\left[P_{\gamma}(\boldsymbol{u}_{h}^{k}) \right]_{\mathbb{R}^{-}}, \boldsymbol{v}^{n} \right)_{\Gamma_{C}}$$
(10)

for all $\mathbf{v} \in \mathbf{H}^1_D(\Omega)$. Then, the error between \mathbf{u} and \mathbf{u}^k_h is measured by the dual norm

$$\left\| \mathcal{R}(\boldsymbol{u}_{h}^{k}) \right\|_{(\boldsymbol{H}_{D}^{1}(\Omega))^{*}} := \sup_{\substack{\boldsymbol{v} \in \boldsymbol{H}_{D}^{1}(\Omega), \\ \| \boldsymbol{v} \|_{C,h} = 1}} \langle \mathcal{R}(\boldsymbol{u}_{h}^{k}), \boldsymbol{v} \rangle$$
(11)

where $\|\cdot\|_{C,h}$ is a norm which takes into account the boundary contact part:

$$\|\boldsymbol{v}\|_{\mathcal{C},h}^{2} := \|\boldsymbol{\nabla}\boldsymbol{v}\|^{2} + \sum_{F \in \mathcal{F}_{h}^{C}} \frac{1}{h_{F}} \|\boldsymbol{v}\|_{F}^{2} \qquad \forall \boldsymbol{v} \in \boldsymbol{H}_{D}^{1}(\Omega).$$
(12)

Unilateral	contact	prol
000		

A posteriori analysis 0000 Numerical results

Conclusions and perspectives

The example of Poisson problem

The error is measured by

$$\left\| (u - u_{h})' \right\| = \sup_{\substack{\nu \in H_{0}^{1}(\Omega), \\ \|\nu'\| = 1}} \left\{ (f, \nu) - (u'_{h}, \nu') \right\},$$
(13)

and we define the flux $\sigma(u) := u'$.

Properties of the exact solution:

$$u\in H^1_0(\Omega)$$
 and $\sigma(u)\in H^1(\Omega)$

Properties of the approximated solution

 $u_h \in H^1_0(\Omega)$ but $\sigma(u_h) \notin H^1(\Omega)$ in general

In	tro	du	cti	on
0	00		0	

Unilateral contact problem 000 A posteriori analysis 0000 Numerical results

Conclusions and perspectives

A posteriori analysis - Stress reconstruction

$$\begin{split} & \boldsymbol{u}_{\hbar}^{k} \in \boldsymbol{H}_{D}^{1}(\Omega) \quad \text{but} \quad \boldsymbol{\sigma}(\boldsymbol{u}_{\hbar}^{k}) \notin \mathbb{H}(\text{div},\Omega), \\ \text{where } \mathbb{H}(\text{div},\Omega) & := \{\boldsymbol{\tau} \in \mathbb{L}^{2}(\Omega) \mid \boldsymbol{\nabla} \cdot \boldsymbol{\tau} \in \boldsymbol{L}^{2}(\Omega) \}. \end{split}$$

Figure: Patch around a node

Each term is obtained through local problems defined on patches around the vertices of the mesh using the Arnold-Falk-Winther mixed finite element space.

ightarrow Equilibrated, H-div conforming and weakly symmetric tensor $oldsymbol{\sigma}_h^k$

Unilateral contact problem 000 A posteriori analysis

Numerical results

Conclusions and perspectives

A posteriori analysis

THEOREM (A posteriori error estimate)

$$\left\|\mathcal{R}(oldsymbol{u}_h^k)
ight\|_{(oldsymbol{H}_D^1(\Omega))^*} \leq \left(\sum_{ au\in \mathcal{T}_h} (\eta_{ ext{tot}, au}^k)^2
ight)^{1/2}$$

where

$$\eta^k_{\mathrm{tot}, \mathrm{T}} := \eta^k_{\mathrm{osc}, \mathrm{T}} + \eta^k_{\mathrm{flux}, \mathrm{T}} + \eta^k_{\mathrm{Neu}, \mathrm{T}} + \eta^k_{\mathrm{disc}, \mathrm{T}} + \eta^k_{\mathrm{reg}, \mathrm{T}} + \eta^k_{\mathrm{lin}, \mathrm{T}}.$$

$$\eta_{\text{osc},T}^{k} := \frac{h_{T}}{\pi} \left\| \boldsymbol{f} - \boldsymbol{\Pi}_{T}^{p-1} \boldsymbol{f} \right\|_{T}$$
$$\eta_{\text{flux},T}^{k} := \left\| \boldsymbol{\sigma}_{h,1}^{k} - \boldsymbol{\sigma}(\boldsymbol{u}_{h}^{k}) \right\|_{T}$$
$$\eta_{\text{Neu},T}^{k} := \sum_{F \in \mathcal{F}_{T}^{C}} C_{t,T,F} h_{F}^{1/2} \left\| \boldsymbol{g}_{N} - \boldsymbol{\Pi}_{F}^{p} \boldsymbol{g}_{N} \right\|_{F}$$

In	tro	odu	icti	on
	0		0	

Unilateral contact problem 000 A posteriori analysis

Numerical results

Conclusions and perspectives OO

A posteriori analysis

THEOREM (A posteriori error estimate)

$$\left\|\mathcal{R}(\boldsymbol{u}_{h}^{k})\right\|_{(\boldsymbol{H}_{D}^{1}(\Omega))^{*}} \leq \left(\sum_{T \in \mathcal{T}_{h}} (\eta_{\text{tot},T}^{k})^{2}\right)^{1/2}$$

where

$$\eta_{\mathsf{tot}, \tau}^{k} := \eta_{\mathsf{osc}, \tau}^{k} + \eta_{\mathsf{flux}, \tau}^{k} + \eta_{\mathsf{Neu}, \tau}^{k} + \eta_{\mathsf{disc}, \tau}^{k} + \eta_{\mathsf{reg}, \tau}^{k} + \eta_{\mathsf{lin}, \tau}^{k}.$$

$$\begin{split} \eta_{\mathrm{disc},T}^{k} &:= \sum_{F \in \mathcal{F}_{T}^{C}} h_{F}^{1/2} \left\| \left[P_{\gamma}(\boldsymbol{u}_{h}^{k}) \right]_{\mathbb{R}^{-}} - \Pi_{F}^{p} \left[P_{\gamma}(\boldsymbol{u}_{h}^{k}) \right]_{\mathbb{R}^{-}} \right\|_{F} \\ \eta_{\mathrm{reg},T}^{k} &:= \|\boldsymbol{\sigma}_{h,2}^{k}\|_{T} + \sum_{F \in \mathcal{F}_{T}^{C}} h_{F}^{1/2} \left\| \boldsymbol{\sigma}_{h,2}^{k,n} \right\|_{F} \\ \eta_{\mathrm{lin},T}^{k} &:= \|\boldsymbol{\sigma}_{h,3}^{k}\|_{T} + \sum_{F \in \mathcal{F}_{T}^{C}} h_{F}^{1/2} \left\| \boldsymbol{\sigma}_{h,3}^{k,n} \right\|_{F} \end{split}$$

oduction Unilatera	al contact problem A posteri	ori analysis Numerica	results Conclusi	ons and perspectives
000 000	000●	0000	00	

A posteriori analysis

THEOREM (A posteriori error estimate)

$$\left\|\mathcal{R}(oldsymbol{u}_{h}^{k})
ight\|_{(oldsymbol{H}_{D}^{1}(\Omega))^{st}}\leq\left(\sum_{ au\in\mathcal{T}_{h}}(\eta_{ ext{tot}, au}^{k})^{2}
ight)^{1/2}$$

where

$$\eta^k_{\mathrm{tot}, \mathrm{T}} := \eta^k_{\mathrm{osc}, \mathrm{T}} + \eta^k_{\mathrm{flux}, \mathrm{T}} + \eta^k_{\mathrm{Neu}, \mathrm{T}} + \eta^k_{\mathrm{disc}, \mathrm{T}} + \eta^k_{\mathrm{reg}, \mathrm{T}} + \eta^k_{\mathrm{lin}, \mathrm{T}}.$$

Adaptive algorithm

• Only the element where $\eta_{tot, T}$ is high are refined.

$$\eta^k_{\mathrm{reg},T} \to 0 \text{ as } \delta \to 0 \qquad \text{and} \qquad \eta^k_{\mathrm{lin},T} \to 0 \text{ as } k \to +\infty$$

• The number of Newton iterations and the value of δ can be fixed automatically by the algorithm using some stopping criteria:

$$\eta_{\text{reg}}^{k} \leq \gamma_{\text{reg}} (\eta_{\text{osc}}^{k} + \eta_{\text{flux}}^{k} + \eta_{\text{Neu}}^{k} + \eta_{\text{disc}}^{k} + \eta_{\text{lin}}^{k}),$$
(14)

$$\eta_{\text{lin}}^{k} \leq \gamma_{\text{lin}}(\eta_{\text{osc}}^{k} + \eta_{\text{flux}}^{k} + \eta_{\text{Neu}}^{k} + \eta_{\text{disc}}^{k}).$$
(15)

edr

14/20

Introduction	Unilateral contact problem	A posteriori analysis
00000	000	0000

Numerical results

Conclusions and perspectives

Numerical results

Figure: Vertical displacement in the deformed domain (amplification factor = 5): whole domain (left) and zoom near the contact boundary (right).

troduction	Unilateral contact problem	A posteriori analysis	Numerical results
0000	000	0000	0000

Conclusions and perspectives

Adaptive mesh refinement

Unilateral contact problem 000 A posteriori analysis 0000 Numerical results

Conclusions and perspectives

Adaptive VS Uniform refinement

$$\|oldsymbol{v}\|_{ ext{en}} := (\sigma(oldsymbol{v}), arepsilon(oldsymbol{v}))$$

and perspectives
and perspective

Stopping criteria

	Initial	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	10^{th}	11^{th}
N _{reg}	7	0	1	0	0	0	0	0	0	0	0	0
N _{lin}	26	2	4	5	3	4	4	4	5	8	8	7

Table: Number of regularization iterations $N_{\rm reg}$ and Newton iterations $N_{\rm lin}$ at each refinement step of the adaptive algorithm with the stopping criteria.

18/20

Introduction	Unilateral contact problem	A posteriori analysis	Numerical results	Conclusions and perspectives
00000	000	0000	0000	●O

Conclusions:

- Nitsche-based method applied to the unilateral contact problem without friction.
- Regularization and linearization steps.
- A posteriori estimate of the error measured with a dual norm.
- We distinguish the different error components.
- Better asymptotic convergence with adaptive refinement.

Perspectives:

- Extension to the unilateral problem with friction and bilateral problem.
- Extension to contact problem with cohesive forces.
- Industrial application on hydraulic structures.

Introduction	Unilateral contact problem	A posteriori analysis	Numerical results	Conclusions and perspectives
00000	000	0000	0000	○●
		References		

- Ainsworth, M. and Oden, J.T. *A Posteriori Error Estimation in Finite Element Analysis.* Wiley, 2000.

Arnold, D.N., Falk, R.S and Winther R. Mixed finite element methods for linear elasticity with weakly imposed symmetry. *Mathematics of Computation*, Vol. **76**, pp. 1699–1723, (2007).

- Botti, M. and Riedlbeck, R. Equilibrated stress tensor reconstruction and a posteriori error estimation for nonlinear elasticity. *Computational Methods in Applied Mathematics*, Vol. **20**, pp. 39–59, (2020).
- Chouly, F., Fabre, M., Hild, P., Mlika, R., Pousin, J. and Renard, Y. An overview of recent results on Nitsche's method for contact problems. *Geometrically* Unfitted Finite Element Methods and Applications, Vol. 121, pp. 93–141, (2017).

Fontana, I., Di Pietro, D., Kazymyrenko, K., A posteriorierror estimation via equilibrated stressreconstruction for unilateral contact problems withoutfriction approximated by Nitsche's method, In preparation.

Riedlbeck, R., Di Pietro, D. and Ern, A. Equilibrated stress tensor reconstruction for linear elasticity problems with application to a posteriori error analysis. *Finite Volumes for Complex Applications VIII*, pp. 293–301, (2017).

Vohralík, M. A posteriori error estimates for efficiency and error control in **eDF** numerical simulations. UPMC Sorbonne Universités, February 2015.

